
UNSUPERVISED ROUTING STRATEGIES FOR CONDITIONAL DEEP

NEURAL NETWORKS

by

Tuna Han Salih Meral

B.S., Computer Engineering, Boğaziçi University, 2017

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2022

ii

UNSUPERVISED ROUTING STRATEGIES FOR CONDITIONAL DEEP

NEURAL NETWORKS

APPROVED BY:

Prof. Lale Akarun

(Thesis Supervisor)

Assist. Prof. Furkan Kıraç

Assist. Prof. İnci Meliha Baytaş

DATE OF APPROVAL: 28.01.2022

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor, Prof. Lale Akarun,

whom I felt blessed to have as my academic guide for her tireless support and guidance

throughout my master’s journey. It was a great honor for me to work with her. I am

grateful to Asst. Prof. Furkan Kıraç and Asst. Prof. İnci Baytaş for participating in

my thesis jury and the fruitful discussion.

I would like to thank Ufuk Can Biçici for his endless support. It would be

impossible for me to complete this thesis without knowing that there is someone I can

ask any question at any time and being sure that I will get an answer.

I would like to thank especially my family for being with me all the time. No

word can be enough for me to explain how loved they are.

Getting through my thesis required more than academic support. I would like

to thank Sezin Akdeniz for always making me feel special, listening to, and, at times,

having to tolerate me. It wouldn’t have been as CUTE an experience as this has been

without her.

I would like to thank Ferhat Melih Dal for all the brainstorming sessions we have

been through, and the dreams we will make happen.

Last but not least, I would like to thank Prof. Aytül Erçil, Ceyhun Burak Akgül,

and Erdem Yörük, on behalf of the Vispera family, for the trust and support they bear

for me. Vispera is a place that keeps me hopeful for the future.

iv

ABSTRACT

UNSUPERVISED ROUTING STRATEGIES FOR

CONDITIONAL DEEP NEURAL NETWORKS

Deep convolutional neural networks are considered state-of-the-art solutions due

to their high classification performance in image classification tasks. The apparent

drawback is the amount of computing power required to process a single input. To

deal with this, this thesis proposes a conditional computation method that learns to

process an input using only a subset of the network’s computation units. Learning to

execute only a part of a deep neural network by routing individual samples has several

advantages. Firstly, it is beneficial to lower the computational burden. Furthermore,

if images with similar semantic features are routed to the same path, that part of the

network learns to discriminate finer differences among this subset of classes, resulting in

improved classification accuracy with fewer parameters and computational resources.

Investigating the network’s activation on a single sample can also help interpret the

neural network’s prediction. Several works have recently exploited this idea using tree-

shaped networks or taking a particular child of a node and skipping parts of a network.

In this thesis, we follow a trellis-based approach for generating specific execution paths

in a deep neural network. We have also designed a routing mechanism that uses unsu-

pervised differentiable information gain-based cost functions to determine which subset

of units in a layer block will be executed for a sample. We call our method Conditional

Unsupervised Information Gain Trellis (CUTE). We tested the clustering performance

of our unsupervised information gain-based objective function under different scenarios.

Finally, we tested the classification performance of our trellis-shaped CUTE network

on the Fashion MNIST dataset. We show that our conditional execution mechanism

achieves comparable or better model performance than unconditional baselines, using

only a fraction of the computational resources.

v

ÖZET

KOŞULLU DERİN SİNİR AĞLARI İÇİN GÖZETİMSİZ

YÖNLENDİRME YÖNTEMLERİ

Derin evrişimli sinir ağları, imge sınıflandırma probleminde yüksek performansla-

rı nedeniyle en gelişmiş çözümler olarak kabul ediliyor. En belirgin dezavantajları, tek

bir girdiyi işlemek için gereken yüksek işlem gücü ihtiyaçları. Gerekli iş gücünü azalta-

bilmek için, bir girdiyi sinir ağının hesaplama birimlerinin yalnızca belli bir alt kümesini

kullanarak işlemeyi öğrenen koşullu hesaplama yöntemleri bulunmakta. Girdileri yön-

lendirerek derin bir sinir ağının yalnızca bir bölümünü kullanmayı öğrenmenin birçok

avantajı var. İlk olarak, işlem yükünü azaltmanın büyük bir fayda sağlayacağı aşikardır.

Ayrıca, benzer özelliklere sahip imgeler aynı yola yönlendirilirse, ağın belli bir kısmı

bu sınıflar arasındaki daha ince farklılıkları ayırt etmeyi öğrenir ve bu da daha az

parametre ve işlem gücü ile daha iyi sınıflandırma başarımı sağlar. Yapay sinir ağının

belli bir girdi karşısındaki aktivasyonlarını inceleyebilmek, sinir ağının tahminlerini yo-

rumlamaya yardımcı olabilir. Son zamanlarda bazı çalışmalar, ağaç şeklindeki ağları

kullanan veya bir düğümün belirli bir çocuğunu seçerek ağın bazı parçalarını es geçmeyi

öğrenen koşullu öğrenim modelleri önerdi. Bu tezde, derin bir sinir ağında belirli yol-

ları kullanmayı öğrenmek için kafes yapısı temelli yeni bir yaklaşım izledik. Ayrıca,

bir imge için bir katman bloğundaki birimlerin hangi alt kümesinin kullanılacağını

öğrenen denetimsiz türevlenebilir bilgi kazanımı tabanlı bir yitim fonksiyonu kullanan

yeni bir mekanizma tasarladık. Yöntemimize Koşullu Denetimsiz Bilgi Kazanımı Kafesi

(CUTE) diyoruz. Denetimsiz bilgi kazanımı tabanlı yitim fonksiyonumuzun kümeleme

başarımını farklı senaryolarda teste tabi tuttuk. Son olarak, Fashion MNIST veri

kümesi üzerinde CUTE mimarimizi denedik. İşlem gücünün yalnızca bir kısmını kul-

lanan koşullu öğrenim mekanizmamızın, koşullu öğrenme kullanmayan referans mod-

ellere karşı karşılaştırılabilir veya onlardan daha iyi başarım sağladığını gösterdik.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . xi

LIST OF SYMBOLS . xii

LIST OF ACRONYMS/ABBREVIATIONS . xiii

1. INTRODUCTION . 1

1.1. Contributions . 2

1.2. Thesis Outline . 4

2. CONDITIONAL COMPUTATION METHODS 5

2.1. Conditional Neural Networks . 6

2.2. Mixture of Experts Methods . 8

2.3. Neural Network-Decision Tree Hybrids 10

3. CONDITIONAL UNSUPERVISED INFORMATION GAIN TRELLIS . . . 11

3.1. Architecture . 11

3.2. Routing . 14

3.3. Unsupervised Local Information Gain Loss 15

3.4. Training With Information Gain Loss 16

4. EXPERIMENTS . 20

4.1. Unsupervised Information Gain Clustering Experiments 20

4.1.1. Method . 21

4.1.2. Datasets . 21

4.1.3. Performance Metrics . 23

4.1.4. Experiments . 25

4.2. CUTE Classification Experiments on the Fashion MNIST dataset . . . 32

4.2.1. Dataset . 32

4.2.2. Architecture . 34

vii

4.2.3. Results . 36

5. CONCLUSION . 42

REFERENCES . 45

viii

LIST OF FIGURES

Figure 1.1. A trellis-shaped architecture. 2

Figure 2.1. Example dynamic layer skipping architectures. Upper Left: After

FL+1, the halting network decided to stop execution. As a result,

layers FL+2 and beyond are not executed. Upper Right: Figure

shows the gating module, which determines the execution of a block

based on the output of the preceding layer. Lower: The skipping

choices for all layers in the main network are generated by the

policy network. 6

Figure 2.2. Example Mixture of Experts and Tree architectures. Upper Left:

Network with soft weighting schemes employ auxiliary modules to

generate the weights for branches. Upper Right: Network with hard

gating mechanisms uses additional networks to make hard gating

decisions. Lower: In the tree structure, routing and transformation

nodes are represented respectively. 9

Figure 3.1. Trellis Graph Structure. 11

Figure 3.2. An example CUTE architecture. 12

Figure 3.3. An example conversion from a conventional feed-forward Network

block to CUTE block. 12

Figure 3.4. Approximate CUTE Training Algorithm. 19

Figure 4.1. The small fully connected neural network used for clustering ex-

periments. 21

ix

Figure 4.2. Datasets populated for clustering experiments. 22

Figure 4.3. Experiment 1: Clustering results on two normally distributed data

blobs with different centers and same variance and number of samples. 26

Figure 4.4. Experiment 2: Clustering results on two anisotropically distributed

data blobs with different centers and same variance and number of

samples. 27

Figure 4.5. Experiment 3: Clustering results on a Large circle containing a

smaller circle with the same number of samples. 28

Figure 4.6. Experiment 4: Clustering results on two normally distributed data

blobs with different centers and variances, and same number of

samples. 29

Figure 4.7. Experiment 5: Clustering results on two normally distributed data

blobs with different centers and number of samples, and same vari-

ances. 30

Figure 4.8. Experiment 6: Clustering results on two moons dataset. 31

Figure 4.9. Example Images From Fashion MNIST Dataset. Starting from

upper left: T-Shirt/Top, Trouser, Pullover, Dress, Coat, Sandal,

Shirt, Sneaker, Bag and Ankle boot. 33

Figure 4.10. t-SNE Embeddings of Fashion MNIST Training Images. 34

Figure 4.11. The Baseline Architecture used in Fashion MNIST experiments. . 35

Figure 4.12. The CUTE Architecture used in Fashion MNIST experiments. . . 35

x

Figure 4.13. The Slim Baseline Architecture used in Fashion MNIST experiments. 35

Figure 4.14. Visualization of Routing Logits for the First Routing Network. . . 37

Figure 4.15. Visualization of Routing Logits for the Second Routing Network. . 38

Figure 4.16. Routing statistics for T-Shirt/Top, Trouser, Pullover, Dress and

Coat classes: Percentage of images in the test set that follow a par-

ticular class route are shown on the tree edges. The second-degree

nodes (F2) of the trellis structure are shown twice to make the re-

sults more readable. The classification accuracy of given classes

following the root is shown at the leaves. 39

Figure 4.17. Routing statistics for Shirt, Sneaker, Bag and Ankle Boot classes:

Percentage of images in the test set that follow a particular class

route are shown on the tree edges. The second-degree nodes (F2)

of the trellis structure are shown twice to make the results more

readable. The classification accuracy of given classes following the

root is shown at the leaves. 40

xi

LIST OF TABLES

Table 4.1. Experiment 1: Clustering scores of the normally distributed data

blobs with different centers and same variance and number of samples. 26

Table 4.2. Experiment 2: Clustering scores of the anisotropically distributed

data blobs with different centers and same variance and number of

samples. 27

Table 4.3. Experiment 3: Clustering scores of dataset with concentric circles. 28

Table 4.4. Experiment 4: Clustering scores of the normally distributed data

blobs with different centers and variances, and the same number of

samples. 29

Table 4.5. Experiment 5: Clustering scores of the normally distributed data

blobs with different centers and number of samples, and same vari-

ances. 30

Table 4.6. Experiment 6: Clustering scores of the two moons dataset. 31

Table 4.7. Fashion MNIST Results. Each sample visits a network equivalent

to CNN (Slim) plus router blocks in CIGN and CUTE. CNN (R*)

network uses CUTE architecture, but routing is handled randomly.

Average # MAC column shows the average number of multiply-

accumulate operations. 36

xii

LIST OF SYMBOLS

|A| Cardinality of set A

{x, y} Data point

argmax Argmax function

E Expected value

Fi ith layer

Fl,i ith computational block at the lth layer

FL ◦ FL+1 Compositional sequence of computational nodes

H Router Network

H[p(x)] Entropy of the probability distribution

IG Information gain

JC Objective function

LCUTE Global loss of CUTE network

MI[U, V] Mutual information between set U and set V

NMI[U, V] Normalized mutual information between set U and set V

p(x|y) Conditional probability of x given y

RI Rand Index

U Ground truth labels

V Predicted labels

Z The matrix indicating the expert selection

θ Neural network parameters
∂y

∂x
Partial derivative

λ Weight parameter

ϕ Routing network parameters

xiii

LIST OF ACRONYMS/ABBREVIATIONS

CIGN Conditional Information Gain Network

CNN Convolutional Neural Network

CUTE Conditional Unsupervised Information Gain Trellis

DAG Directed Acyclic Graph

NMI Normalized Mutual Information

PCA Principal Component Analysis

ReLU Rectified Linear Unit

t-SNE t-distributed Stochastic Neighbor Embedding

UIGC Unsupervised Information Gain Clustering

1

1. INTRODUCTION

Image classification is one of the most fundamental problems in the computer

vision domain, and deep learning models have become the state-of-the-art approaches

in image classification since the introduction of AlexNet [1] in the ImageNet [2] 2012

challenge with an error rate nearly 10.8% lower than the runner-up model. Since then,

deep learning models have become more accurate while getting larger and heavier

computationally, size-wise, and time-wise. This makes these models impractical for

edge computation and infeasible for embedded devices.

Conditional computing has offered to tackle the problems introduced by com-

putationally expensive models by allowing the activation of a subset of the network

dependent on the input, which directly reduces the computational burden of the archi-

tecture. One of the most notable advantages of computational methods is that they

can allocate computations on-demand at test time by selecting only a subset of the

whole model. Another direct advantage is that subsets of the network activated by

a particular type of inputs become better at classifying those types since the gradi-

ents will be sharper and more distinctive. In addition, conditional methods allow a

trade-off between accuracy and efficiency. Therefore, they are more adaptable to low-

computation environments and embedded devices. There are similar mechanisms in

the human brain, which are believed to process information in a dynamic way [3]. It

is possible to investigate which part of the network is activated given an input sample

and which parts of the input are accountable for specific predictions.

Conditional networks that use routing to handle dynamic activation of a sub-

network have gating mechanisms that selectively employ branches based on the input

sample and use the selected branch’s transformation to the input sample for the next

layer. These types of models can have tree-shaped or trellis-shaped architectures, as

seen in Figure 1.1. A similar idea has been exploited in “Conditional Information Gain

Networks” (CIGN) [4], which builds a tree-structured network and presents router net-

2

works for each non-leaf node. In CIGN, the router mechanisms trained with supervised

local information gain by learning an optimal partition, such that the data routed into

the subtrees become more purified, in the sense that semantically similar classes are

brought together. Trainable weight parameters in the corresponding subtrees learn

discriminative representations for their respective data groups, downsizing the num-

ber of parameters in the tree branches. The problem with the tree structure is that

misrouted samples can end up in subtrees that are not specialized to classify them.

When a sample is misrouted in this manner to the wrong branch, it is possible to be

misclassified. The trellis structure has the advantage of misrouted samples recovering

from misrouted paths in later stages.

Figure 1.1. A trellis-shaped architecture.

1.1. Contributions

In this thesis, we propose a trellis-based approach for generating specific execution

paths in a deep neural network. Our novel trellis-shaped model allows misrouted

samples to recover. In a tree, there is only a single path between two nodes. However,

there are multiple paths between two nodes in a Trellis structure. If a sample is

misrouted to the incorrect computational unit, it will still have a chance to select the

correct path in the next layer. In this work, we propose Conditional Unsupervised

Information Gain Trellis, CUTE, which uses an unsupervised version of information

gain-based routing mechanism in [4] in a DAG or Trellis structure. Information gain-

based losses in each layer of the Trellis structure lie at the model’s heart. We aim to

3

create expert paths in the Trellis structure for different semantic groups in the given

data. Given a convolutional or fully connected layer or a single block of such layers, we

divide the computational units into N parallel groups (called F units), whose aim is to

learn required representations for the data and a single H unit in layer l, Hl, called a

router, which learns a probability distribution over the F units of layer l+1, Fl+1. The

probability distribution on each block’s F units defines a global probability distribution

on each root to leaf path in the Trellis structure, and hence the model can be treated

as a hierarchical mixture of experts model [5]. The mixture of experts model does not

lead to a straightforward EM training due to the large number of experts and each

root-to-leaf expert being a convolutional neural network. Instead, we define routing

mechanisms based on differentiable information gain objectives [6], which allow sparse

execution of the computational blocks and group samples having semantically similar

features together. When similar samples with minor semantic differences follow the

same root-to-leaf paths in the DAG structure, it can be hypothesized that the deep

network making up the root-to-leaf path will learn to differentiate between the finer

details of such samples, automatically converting the original multi-class problem to a

finer one.

An example diagram for a CUTE model is in Figure 1.1. In this figure, F nodes

are used for feature extraction, while H nodes use as router networks that decide

which one of the parallel F nodes will use. F nodes may contain a single dense layer, a

convolutional layer, or the combination of several dense, convolutional, and activation

layers. H nodes may also be composed of several layers, but we try to keep the node

sizes minimum to avoid the additional computational burden.

The probability distributions over each block’s F units are trained with the previ-

ous block’s corresponding unsupervised local information gain losses. We hypothesize

that the Trellis structure is inherently a more robust topology than trees, presented

in [4] since when a sample is misrouted in a particular block, it can be recovered in the

blocks following it.

4

1.2. Thesis Outline

The rest of the thesis is structured as follows: In Chapter 2, we present a liter-

ature survey of the existing methods and models to summarize current and previous

studies in the context of our research on conditional and dynamic computation in deep

neural network architecture. In Chapter 3, we give the detailed formulation of CUTE

and explain CUTE training and inference methodology. In Chapter 4, we present the

experiments. In the first section of this chapter, we try to illustrate the effectiveness

of the unsupervised information gain objective on the clustering task. Then, we inves-

tigated our method’s effectiveness and routing behaviors on the well-known Fashion

MNIST [7] dataset. Chapter 5 concludes the thesis.

5

2. CONDITIONAL COMPUTATION METHODS

Image classification with deep learning models firstly focused on the well-known

MNIST [8] dataset for the digit classification problem, unseating the SVM-based meth-

ods in 2006 [9]. In 2012, deep learning models became the state-of-the-art approaches

for the image classification tasks on ImageNet [2] by a large margin compared to the

runner-up methods [1]. The challenging part was scaling from MNIST, a dataset con-

taining 28 × 28 grayscale images, to ImageNet, consisting of 256 × 256 RGB images.

The deep models that handled the challenge employed the convolutional layers whose

sequential nodes were not fully connected but only sparsely connected. They have

also utilized the GPU technology to speed up training procedures by parallel com-

putation [10]. As we inspect the ImageNet classification performances of the neural

networks, we can see larger models performing better provided the appropriate regu-

larization methods are applied. Therefore, we can say that it becomes a new challenge

to create efficient models as well as well-performing large models. As mentioned in [11],

conditional computation methods can be a path to creating efficient network models

with increased performances.

Convolutional Unsupervised Information Gain Trellis (CUTE) model can be cat-

egorized and compared with various areas in deep learning literature. Firstly, it is

most certainly a conditional computation model since the network selectively activates

a part of the network depending on the input sample. CUTE also consists of sequential

and parallel compositions of several Mixture of Expert nodes, which lets our model be

categorized as a Hierarchical Mixture of Experts Model. Since the CUTE architecture

has a trellis-shaped graph structure, it is possible to compare CUTE with decision

tree-neural network hybrid models.

6

2.1. Conditional Neural Networks

Conditional computation in neural networks aims to reduce the computational

cost during inference and training by selectively activating a subset of the network.

It can additionally try to allocate a subset of the network for a subset of samples

corresponding to a specific subset of the input space. One of the pioneering works

in conditional computation for neural networks is presented in [12], which investigates

several approaches to estimate the gradient of a loss function with respect to stochastic

neurons that can be switched on or off according to their outputs.

Figure 2.1. Example dynamic layer skipping architectures. Upper Left: After FL+1,

the halting network decided to stop execution. As a result, layers FL+2 and beyond

are not executed. Upper Right: Figure shows the gating module, which determines

the execution of a block based on the output of the preceding layer. Lower: The

skipping choices for all layers in the main network are generated by the policy

network.

7

Murdock et al. [13] hypothesized that parallel layers could be represented as a

single, combined layer with a block-structured weight matrix. Their work is a gen-

eralization of Dropout [14], which allows for structure learning via back-propagation

to parameterize hierarchical architectures. Bengio et al. [15] proposed a conditional

computation method utilizing reinforcement learning approaches. They attempt to

preserve the prediction accuracy of the network while sparsifying the network activa-

tions.

BlockDrop [16] uses residual connections that activate according to the sample.

Instead of executing all the blocks of a ResNet architecture, BlockDrop learns an acti-

vation policy using reinforcement learning to select the minimal configuration of blocks

needed to classify an input sample. They argue that the resulting sample-specific paths

in the network reflect the input’s difficulty and encode meaningful visual information.

That is, easier samples activate fewer paths, while some paths are activated only to

extract visual patterns used to distinguish a cluster of classes. A similar approach to

conditional computing is presented by Veit et al. [17] as ConvNet-AIG. The architec-

ture of ConvNet-AIG is similar to BlockDrop, but gates decide the activation of each

layer. The gates that decide to execute or skip a layer are trained end-to-end with the

network as opposed to BlockDrop, which requires additional training procedures that

include reinforcement learning. In a similar work, Wang et al. proposed SkipNet [18],

a modified version of ResNet that uses gating networks to decide to skip blocks of

the network based on the activations of the previous layer. They use a hybrid train-

ing procedure combining supervised learning and reinforcement learning to handle the

nondifferentiable hard-gating problem.

McGill et al. [19] proposed a cascaded network architecture that consists of a

multi-column multi-row architecture. Their approach is to stop network activations at

an early layer and pass ambiguous samples forward to subsequent layers for further

execution. They offer different training procedures for their architecture. Figurnov et

al. [20] proposed a ResNet-based architecture that dynamically configures the number

of layers executed for each input sample. They hypothesized that the network, SACT,

8

stops the computation at the layer where the extracted features are good enough for

classification. Liu et al. [21] proposed dynamically throttleable neural networks, TNN,

which adaptively manage the balance between the target performance and resource

usage. Cai et al. [22] proposed Dynamic Routing Networks, DRNet, which execute

layers depending on the instances using lightweight routing networks generating branch

importance weights for each branch. They also use the Gumbel-Softmax [23, 24] to

approximate sampling discrete branch selection.

Ioannou et al. [25] hypothesized that applying a block-diagonal pattern of spar-

sity to the activation between layers in a neural network is equivalent to giving the

network architecture a routed tree-shaped structure. They created a conditional ar-

chitecture beforehand during training and used the learned structure in inference a

priori. Teerapittayanon et al. [26] introduced BranchyNet, which allows early exiting

mechanisms for known architectures such as AlexNet and ResNet. They hypothesized

that features extracted from the early layers are enough for good classification perfor-

mance for most of the input, while complex samples can be routed forward to extract

more features. They added that exiting early enables the network to create better

gradients for the early layers. Inspired by the left-right asymmetry of the brain, Jiang

et al. [27] proposed a two-branch solution, one of which predicts the coarse labels while

the other branch makes fine predictions. The two branches include mechanisms for

skipping layers using a minimal gating network.

2.2. Mixture of Experts Methods

A machine learning algorithm that splits a problem space into homogenous parts

using multiple learners is called a mixture of experts. Jordan et al. [5] proposed an

architecture called Hierarchical Mixtures of Experts where multiple levels of gating

functions are used to condition model output. Gating mechanisms assign weights

to each expert in their model, and their predictions are accumulated. The learning

algorithm of gating functions is based on the Expectation-Maximization algorithm.

The mixture of experts approach is not preferable in the deep neural network domain

9

due to the high computational burden for training and evaluation. However, Eigen et

al. [28] proposed Deep Mixture of Experts, DMoE, employing gating networks at each

layer of a multilayer network. They hypothesized that by conditioning the gating and

expert networks on the output of preceding layers, their model can provide an ensemble

combining an exponentially large number of valuable experts.

Figure 2.2. Example Mixture of Experts and Tree architectures. Upper Left:

Network with soft weighting schemes employ auxiliary modules to generate the

weights for branches. Upper Right: Network with hard gating mechanisms uses

additional networks to make hard gating decisions. Lower: In the tree structure,

routing and transformation nodes are represented respectively.

Shazeer et al. [29] introduced a neural network component consisting of several

sub-networks controlled by gating networks that determine which sparse combination

of experts will be used. Ahmed et al. [30] proposed a network comprising of a two-stage

training scheme. Firstly, the network is trained to classify coarse labels learned through

10

training. Secondly, the early network layers learned in the first stage are used as initial

weights. An expert for each coarse label is trained to discriminate the fine classes

belonging to the coarse label. Yan et al. [31] proposed a similar method. They used

coarse labels determined beforehand for an easy classification task, and challenging

classes were routed to fine classification experts.

2.3. Neural Network-Decision Tree Hybrids

Our CUTE architecture uses a trellis-shaped architecture, but decision trees from

different perspectives inspire it. The routing strategy of CUTE depends on an infor-

mation gain-based loss function similar to the splitting criteria of some decision trees.

Murthy et al. [32] proposed Deep Decision Networks where the network is built in

multiple stages during training. The network creates a classifier for the easily distin-

guished classes at each stage and partitions the remaining data. All the weights in the

previous layers are frozen while training in the next stage. The resulting network has

a binary tree-shaped architecture. Kontschieder et al. [33] proposed a network that

unifies the decision trees and deep convolutional networks. They utilize the represen-

tation learning power of the convolutional layers at the early stages of the network to

provide valuable features for the splitting functions and finalize the network with dif-

ferentiable decision tree classifiers. Zhou et al. [34] introduced Multi-Grained Cascade

Forest, gcForest, which consists of several layers of random forest classifiers instead of

differentiable neural network layers.

Biçici et al. [4] proposed Conditional Information Gain Networks, CIGN, that

built a tree-structured architecture and introduced router networks at each non-leaf

node trained using an information-gain-based objective function. They intend to create

expert nodes in the tree to classify a subset of similar classes. At each level of the tree,

the distribution of classes becomes purer, and more refined classifiers are trained at the

leaves of the network. Overall, the network is trained end-to-end using a combination of

routing and classification objectives. Our work is an improvement over the architecture

and the routing objective of the CIGN.

11

3. CONDITIONAL UNSUPERVISED INFORMATION

GAIN TRELLIS

3.1. Architecture

The CUTE algorithm builds upon a Trellis structure of computational units. A

trellis structure (Figure 3.1) is a graph split into vertical slices in which each node in

each slice connects to at least one node in the earlier slice and at least one node in the

next slice. The nodes in the earliest slice have connections to only the next slice, and

the nodes in the latest slice in the trellis have connections only to the earlier slice.

Figure 3.1. Trellis Graph Structure.

In this thesis, we propose a conditional architecture that uses an information

gain objective to route selected subsets of the network. Since we use unsupervised

techniques to compute the information gain objective, we call this the Conditional

Information Gain Trellis (CUTE).

In the CUTE, a feed-forward deep neural network is divided into blocks consisting

of sequential layers Fi. To extract low-level features shared by all subsequent layers,

the CUTE architecture has a certain amount of constant computation in block 0, F0.

Each Fi, 0 < i < N − 1, has Ki parallel processing units. We divide layers of every

block in the feed-forward network into Kl parts. An example architecture based on the

12

Figure 3.2. An example CUTE architecture.

LeNET architecture [35] is presented in Figure 3.2 If the block has a convolutional layer

with C filters, we use C/K filters in each parallel unit. Similarly, if a block has a fully

connected layer with D nodes, we use D/K filters in each parallel unit. Although we

could have used different block structures in parallel units inside each block, we opted

to use identical units for each parallel unit. Example conversion from a conventional

feed-forward network block to a CUTE block is presented in Figure 3.3

Figure 3.3. An example conversion from a conventional feed-forward Network block

to CUTE block.

13

Each parallel unit in a CUTE block can contain variable number of convolutional

layers, fully connected layers, which can also have deep neural network operations such

as Batch Normalization [36], Layer Normalization [37], Dropout [14], and different

types of non-linear activation. We call the ith computational block at the lth layer

as Fl,i. Every feed-forward operation in the CUTE utilizes only one block in each

layer. Therefore, a compositional sequence of computational nodes (FL◦FL−1,il−1
◦· · ·◦

F2,i2 , F1,i1 , F0) makes for a root-to-leaf expert. Each such root-to-leaf expert defines a

posterior distribution p(y|Z, x, θ) for the given data point {xi, yi}. Z is defined as the

matrix indicating the expert selection for each layer. Row l of Z shows the expert

selection for layer Ll. Each row in Z is a one-hot vector. For example, for Kl = 3

at layer l, if we have Zl = [0, 1, 0], this means that the computational block Fl,1 is

activated while Fl,0 and Fl,2 are skipped for the given sample.

Each computational layer in the CUTE includes an additional routing unit H.

H units decide which parallel blocks each sample will follow in the next CUTE layer.

They are connected to outputs of the F blocks in the same layer and parameterize

a probability distribution p(Zl+1|x, θ, ϕ) on the next layer of F blocks. θ contains all

neural network parameters such as convolutional weights and fully connected layer

weights driving the F blocks. ϕ contains all parameters which transform the output of

F blocks into a probability distribution in the H units. Since H units take the outputs

of F blocks as input, it depends on the θ parameters. F blocks are trained with the

categorical cross-entropy loss, while H parameters are trained with the unsupervised

information gain loss.

Given a dataset {xi, yi}Ni=0, the classification objective of the mixture of experts

model can be described as

Ep(x,y)[log p(y|x, θ, ϕ)] =
1

N

N∑
i=1

log
∑
Z

p(yi|Z, xi, θ)
L∏
l=1

p(Zl|xi, θ, ϕ). (3.1)

It is challenging to calculate stochastic gradient estimates for the objective func-

14

tion in Equation (3.1). Therefore, we will use the lower bound of the objective, similar

to the approach of REINFORCE, [38] which makes use of Jensen’s inequality as

JC(θ, ϕ) =
1

N

N∑
i=1

∑
Z

log p(yi|Z, xi, θ)
L∏
l=1

p(Zl|xi, θ, ϕ)

≤ 1

N

n∑
i=1

log
∑
Z

p(yi|Z, xi, θ)
L∏
l=1

p(Zl|xi, θ, ϕ). (3.2)

Instead of Equation (3.1), we take the first part of the Equation (3.2) in the CUTE

training.

3.2. Routing

In the CUTE architecture, routing is managed by H units. H unit of layer Li

controls which of the parallel blocks of Li+1 will be used. H units consist of global

average pooling layers and fully connected layers. Their computational cost is minimal

compared to F units.

The use of Information Gain objectives to route samples to a subset of the network

was proposed in Biçici et al. [4], where ground truth labels were used to compute the

Information Gain. In this thesis, we propose Unsupervised Information Gain Loss.

Alongside the classification objective, we also use the unsupervised information gain

losses, IGl, to route samples to computational units in every layer l.

With these two types of losses (classification and routing losses) and additional

regularizers, global loss becomes

LCUTE = −JC(θ, ϕ)− λIG

L∑
l=1

IGl + Ω(θ, ϕ). (3.3)

15

3.3. Unsupervised Local Information Gain Loss

The outputs of H units define a probability distribution p(Zl|z, θ, ϕ) over the F

units of the next layer. The parameters of routing networks ϕ and the main network

θ are trained with losses defined using the information gain calculated over these lo-

cal probability distributions. We achieve a decision tree-like purification inside each

parallel unit using these information gain-based loss functions. Decision trees mostly

use greedy search in the feature space and find the optimal split that minimizes class

impurity between sibling nodes. Even though popular decision tree algorithms such

as ID3 [39] and C4.5 [40] use similar information gain maximization approaches, these

mechanisms are not differentiable since they involve discrete operations such as count-

ing data points to calculate information entropy. Bicici et al. [4] proposed a tree-

structured neural network with differentiable information gain-based routing. This

thesis introduces a trellis-shaped neural network with an unsupervised local informa-

tion gain-based routing.

We define an unsupervised information gain loss similar to Bicici et al.’s work [4].

The main difference between ours and their loss definition is that we do not use the

label information. We define the following joint probability distribution for each block

l > 0 as

p(Zl, x|θ, ϕ) = p(x)p(Zl|x, θ, ϕ). (3.4)

We define p(Zl|x, θ, ϕ) as a softmax over possible values of Zl as

p(Zl = k|x, θ, ϕ) = exp (wT
k hl(x) + bk)/τ∑Kl

i=0 exp(w
T
i hl(x) + bi)/τ

. (3.5)

The hyperplanes wk, bk determine the decision boundaries of the routers and hl(x) is the

output of the transformations in the H units. Input x of the hl(x) is the output of the

corresponding Fl unit. τ is a hyperparameter controlling the smoothness of the softmax

output distribution. As τ → ∞, the distribution approaches to uniform and as τ → 0,

16

distribution approaches to onehot representation, setting the (argmaxi(w
T
i hl(x) + bi))

entry to one and the others to zero.

The unsupervised local information gain at layer l is defined as

IGl = H[p(Zl)]−H[p(Zl|x, θ, ϕ)]. (3.6)

Here H[p(x)] is defined as the entropy of the probability distribution as:

p(x) : H[p(x)] = −
∑
x

p(x) log p(x). (3.7)

The first term, H[p(Zl)], acts as a regularizer term that prevents all samples from taking

the same route. This term is calculated as the mean over the batch activations of the

routing networks for each route. Since we are trying to minimize the information

entropy for the routing activations, the network sends the same number of samples

to each route. The second term is calculated from the activations of each sample.

By minimizing −H[p(Zl|x, θ, ϕ)], the network tries to increase the entropy of routing

activations for each sample and make routing choices more confident.

3.4. Training With Information Gain Loss

The derivatives of the lower bound in Equation (3.2) with respect to the main

network parameters θ are given as

∂JC
∂θ

=
1

N

N∑
i=1

∑
Z

∂ log p(yi|Z, xi, θ)

∂θ

L∏
l=1

p(Zl|xi, θ, ϕ)

+
N∑
i=1

∑
Z

log p(yi|Z, xi, θ)
∂
∏L

l=1 p(Zl|xi, θ, ϕ)

∂θ
(3.8)

17

and with respect to the routing network parameters ϕ are given as

∂JC
∂ϕ

=
1

N

N∑
i=1

∑
Z

log p(yi|Z, xi, θ)
∂
∏L

l=1 p(Zl|xi, θ, ϕ)

∂ϕ
. (3.9)

While the first term of
∂JC
∂θ

leads to a simple Monte Carlo approximation by

drawing samples xi ∼ p(x) and Zi ∼ p(Z|xi, θ, ϕ);
∂JC
∂ϕ

and the the second term

of
∂JC
∂θ

is not expectations with respect to a distribution. Therefore, Monte Carlo

approximation is not an option. In general, the gradients of the type
∂Ep(z|w)[f(x)]

∂w
are

difficult to compute. Hence, there are other solutions such as gumbel softmax [23, 24]

to approximate such cases.

In CUTE, we completely ignore
∂JC
∂ϕ

, shown in Equation (3.9) and the second

part of the
∂JC
∂θ

from Equation (3.8), whose first part we will call
∂ĴC
∂θ

. The routing

network parameters θ are trained merely using the information gain losses at each

block. The main network parameters θ are also trained using the information gain

objectives.

While training the network, at each block l, the router unit uses the outputs of the

computational units F to build and sample from probability distributions p(Zl|x̂l, θ, ϕ)

where x̂l are the outputs for each corresponding F unit. According to the samples Zl,

the corresponding F units in the next block are activated for the current sample xi. In

general, this is equivalent to sampling a root-to-leaf path for each sample, evaluating

and backpropagating the corresponding error signal through the followed path. Since

we only partially use the primary loss gradients and depend on the information gain

losses to train the router networks, we call this algorithm the “Approximate Training”.

The pseudo-code for the algorithm is shown in Figure 3.4. We also let the routers

use a uniform sampling for a certain number of epochs before enabling information

gain objectives to train each route with every possible sample at the beginning. Our

experiments show that this is an effective regularizer for the CUTE.

18

Only a single path is evaluated during the inference of sample x, making the

algorithm more efficient than unconditional baselines. During inference, the most likely

F unit is chosen from the corresponding H unit’s output for each sample x. This expert

path is the most appropriate because it is trained with samples semantically similar to

x; hence, it has high discriminative power.

19

for 0 < epoch < Nwarmup do

Use uniform sampling at the routers

Train the rest of the network like a conventional CNN

end for

for Nwarmup <= epoch < Ntraining do

Sample a minibatch {xi, yi}Bi=1 ∼ p(x, y)

for 1 ≤ i ≤ B do

x̂i
0 = F0(xi)

Sample next layer’s F units: Zi
1 ∼ p(Zi

1|x̂i
0, θ, ϕ)

end for

Evaluate information gain: IG1 = H[p(Z1)]−H[p(Z1|x, θ, ϕ)]

Compute gradients:
∂IG1

∂θ
and

∂IG1

∂ϕ
for 1 ≤ l ≤ L do

for 1 ≤ i ≤ B do

j = argmax{Zi
l}

x̂i
l = Fl,j(x̂

i
l−1)

Sample next layer’s F units: Zi
l+1 ∼ p(Zi

1+1|x̂i
l, θ, ϕ)

end for

Evaluate information gain: IGl+1 = H[p(Zl+1)]−H[p(Zl+1|x, θ, ϕ)]

Compute gradients:
∂IGl

∂θ
and

∂IGl

∂ϕ
end for

for 1 ≤ i ≤ B do

Evaluate posterior: p(yi|Zi, x̂
i
L, θ)

Compute gradient:
∂ log p(yi|Zi, x̂

i
L, θ)

∂θ
end for

end for

Figure 3.4. Approximate CUTE Training Algorithm.

20

4. EXPERIMENTS

CUTE (Conditional Unsupervised Information Gain Trellis) architecture is a con-

ditional neural network structure designed for classification using conditional routing

methods for the parallel computational units. Before each layer containing parallel

computational units, CUTE has routing networks designed to route samples to the

corresponding parallel unit of the following layer. Each sample activates one of these

parallel computational units, and features are extracted for the next computational

unit and routing network. These routing networks are trained using unsupervised in-

formation gain loss, aiming to cluster similar images and send them to similar paths,

creating expert computational nodes that can better classify a subset of classes.

We experimented with and inspected the clustering performance of neural net-

works optimized with unsupervised information gain loss. We hypothesized that our

unsupervised information gain loss clusters samples with similar features. To show the

clustering performance of our unsupervised information gain loss, we designed clus-

tering experiments with several datasets consisting of different data distributions and

scenarios in Section 4.1.

In addition to clustering experiments with small neural networks, classification

experiments have been performed on Fashion MNIST [7] using the CUTE version with

a LeNet [41] architecture in Section 4.2. Alongside the classification performance of the

CUTE networks, we have inspected the routing behaviors of the CUTE architecture.

4.1. Unsupervised Information Gain Clustering Experiments

Unsupervised information gain loss is designed explicitly to route inputs with

similar features to similar paths to create a mixture of experts classifier that can classify

a subset of the data better than a standard network trained with all of the training

data. Although the CUTE network is trained using a supervised classification loss,

21

routing is based on an unsupervised information gain loss.

The experiments on Fashion MNIST have shown that given input with good rep-

resentational power, unsupervised information gain objective does a decent job routing

similar inputs to similar paths. However, we wanted to show that the unsupervised

information gain objective can also be a standalone objective function for the clus-

tering task. The clustering results are pretty similar to the well-known K-Means [42]

algorithm regarding performance and clustering behavior.

4.1.1. Method

Figure 4.1. The small fully connected neural network used for clustering experiments.

In clustering experiments, a small, fully connected neural network with two in-

puts, two hidden layers having 16 nodes, and two nodes have been employed at the

output layer, as shown in Figure 4.1. Networks have been trained with the input data

for ten epochs using the stochastic gradient descent optimizer with a 0.05 learning

rate. This fully connected network can be thought of as a routing network in a CUTE

architecture. In these experiments, we try to understand the clustering performance

of these routing networks trained separately from a classification network.

4.1.2. Datasets

In clustering experiments, various custom two-dimensional datasets are used as

seen in Figure 4.2 with the expected cluster results to visualize different clustering

scenarios and compare the results visually.

22

Figure 4.2. Datasets populated for clustering experiments.

23

The first dataset contains two normally distributed data blobs with different cen-

ters and the same variance and number of samples. The second is a dataset consisting of

two anisotropically distributed data blobs with different centers and the same variance

and number of samples. The third is a dataset consisting of a large circle containing

a smaller circle in two dimensions with the same number of samples. Next, a dataset

that contains two normally distributed blobs with the same number of samples and

different centers and variances has been employed. In addition, a dataset with two

normally distributed blobs with different centers and sample sizes and the same vari-

ances has been used. Lastly, the two moons dataset consisting of two interleaving half

circle-shaped blobs with the same number of samples has been employed.

4.1.3. Performance Metrics

To compare the results of the clustering neural network with K-Means, we have

inspected normalized mutual information, and the Rand Index [43] for the clustering

results. In most scenarios, the results were similar, although unsupervised information

gain clustering has the upper hand for some scenarios compared to K-Means.

Normalized mutual information (NMI) gain is a normalization of mutual infor-

mation, also called information gain, scored on a scale between 0 and 1. NMI score 0

means no mutual information, while NMI score 1 means total correlation. Assuming

two label distributions of the same dataset, U (ground truth labels) and V (predicted

cluster labels); the entropy of the label distributions are calculated using Equation

(3.7) as

H[U] = −
|U |∑
i=1

p(i) log(p(i)) (4.1)

and

H[V] = −
|V |∑
j=1

p(j) log(p(j)) (4.2)

24

where p(i) = |Ui|/N is the probability that an object picked at random from U belongs

to class Ui, and p(j) = |Vj|/N is the probability that an object picked at random from

V belongs to class Vj. The mutual information between U and V is calculated by

MI[U, V] =

|U |∑
i=1

|V |∑
j=1

p(i, j) log

(
p(i, j)

p(i)p(j)

)
. (4.3)

The normalized mutual information is, then, defined as

NMI[U, V] =
MI(U, V)

µ(H[U],H[V])
. (4.4)

Rand index calculates the similarity of the two assignments, disregarding permutations.

It can be viewed as a binary classification over the pairs of elements in the given dataset.

Assuming two label distributions of the same dataset, U (ground truth labels) and V

(predicted cluster labels); to define Rand index, we need to define the two following

variables a and b as

a = |{(oi, oj)|oi, oj ∈ Uk, oi, oj ∈ Vl}| (4.5)

and

b = |{(oi, oj)|oi ∈ Uk, oj ∈ Um, k ̸= m, oi ∈ Vl, oj ∈ Vn, l ̸= n}|. (4.6)

Variable a represents the number of pairs of elements belonging to the same clusters

in U and V , while variable b is the number of pairs belonging to the different clusters

in U and V .

Therefore, the Rand index (RI) is calculated as

RI =
a+ b

n(n− 1)/2
. (4.7)

25

4.1.4. Experiments

In the first experiment, both k-means and unsupervised information gain cluster-

ing performed similarly, as seen in Figure 4.3 and Table 4.1. An attractive property is

observed when the logit values obtained from unsupervised information gain clustering

output are visualized. Logit outputs are similar to a PCA projection of the input data

into a line, making it easier to distinguish samples.

For each dataset, we have visualized the training data distribution on the upper

left sides of the figures; K-Means clustering results on the upper right side of the

figure; clustering results of the neural network trained with unsupervised information

gain clustering (UIGC) on the lower right sides of figures; logit outputs of the neural

network colored with the ground truth labels on the lower left sides of the figures.

Unsupervised information gain clustering performed better in the second exper-

iment, as seen in Figure 4.4 and Table 4.2. We have seen the same property of logit

values as in the first experiment. With these results, we can conclude that our method

is more robust to irregular manifolds and anisotropic distributions than K-Means clus-

tering.

In the third experiment, unsupervised information gain clustering performed as

poorly as K-Means clustering, as seen in Figure 4.5 and Table 4.3. We have seen the

same property of logit values as in the first experiment. With these results, we can

conclude that our method is not robust to a dataset that is not linearly separable.

In the fourth experiment, unsupervised information gain clustering performed

better at both metrics than K-Means clustering, as seen in Figure 4.6 and Table 4.4.

We have seen the same property of logit values as in the previous experiments. We

can conclude that our method is more robust to variance difference than K-Means

clustering with these results.

26

Figure 4.3. Experiment 1: Clustering results on two normally distributed data blobs

with different centers and same variance and number of samples.

Table 4.1. Experiment 1: Clustering scores of the normally distributed data blobs

with different centers and same variance and number of samples.

NMI Score Rand Index

K-Means 1.0 100.00%

UIGC (Ours) 1.0 100.00%

27

Figure 4.4. Experiment 2: Clustering results on two anisotropically distributed data

blobs with different centers and same variance and number of samples.

Table 4.2. Experiment 2: Clustering scores of the anisotropically distributed data

blobs with different centers and same variance and number of samples.

NMI Score Rand Index

K-Means 0.5 80.44%

UIGC (Ours) 1.0 100.00%

28

Figure 4.5. Experiment 3: Clustering results on a Large circle containing a smaller

circle with the same number of samples.

Table 4.3. Experiment 3: Clustering scores of dataset with concentric circles.

NMI Score Rand Index

K-Means 0.0 49.99%

UIGC (Ours) 0.0 49.99%

29

Figure 4.6. Experiment 4: Clustering results on two normally distributed data blobs

with different centers and variances, and same number of samples.

Table 4.4. Experiment 4: Clustering scores of the normally distributed data blobs

with different centers and variances, and the same number of samples.

NMI Score Rand Index

K-Means 0.83 93.88%

UIGC (Ours) 0.98 99.52%

30

Figure 4.7. Experiment 5: Clustering results on two normally distributed data blobs

with different centers and number of samples, and same variances.

Table 4.5. Experiment 5: Clustering scores of the normally distributed data blobs

with different centers and number of samples, and same variances.

NMI Score Rand Index

K-Means 0.99 99.92%

UIGC (Ours) 1.0 100.00%

31

Figure 4.8. Experiment 6: Clustering results on two moons dataset.

Table 4.6. Experiment 6: Clustering scores of the two moons dataset.

NMI Score Rand Index

K-Means 0.39 74.41%

UIGC (Ours) 0.48 79.49%

32

In the fifth experiment, unsupervised information gain clustering performed sim-

ilarly at both metrics with K-Means clustering, as seen in Figure 4.7 and Table 4.5.

We have seen the same linear property of logit values as in the previous experiments.

With these results, we can conclude that our method is as robust to data imbalance as

K-Means clustering. If class imbalance would be a problem for unsupervised clustering,

we can overcome this issue by introducing a weight parameter to Equation (3.6) and

modifying the equation as

IGlbalanced
= λbalanceH[p(Zl)]−H[p(Zl|x, θ, ϕ)]. (4.8)

In the last experiment, unsupervised information gain clustering performed poorly

at both metrics with K-Means clustering, as seen in Figure 4.8 and Table 4.6. We have

seen the same linear property of logit values as in the previous experiments. With

these results, we can conclude that our method is not robust to data that is not

linearly separable, as seen in the third clustering experiment.

4.2. CUTE Classification Experiments on the Fashion MNIST dataset

CUTE is designed as an image classification model based on a conditional arti-

ficial neural network structure. In this section, we have investigated the classification

performance of the CUTE architecture using a CUTE version of LeNet architecture on

the Fashion MNIST dataset, alongside the routing behaviors of routing networks and

different routing behaviors of each class.

4.2.1. Dataset

Fashion MNIST [7] dataset replaces the well-known MNIST [8] and has similar

properties such as image size (28× 28 gray-scale images) and the sizes of training and

test sets (60000 and 10000 images, respectively). It also contains ten classes containing

different types of clothing: t-shirt, trouser, pullover, dress, coat, sandal, shirt, sneaker,

33

bag, and ankle boot. The fashion MNIST dataset is designed to share the same image

size and structure of training and test splits with the MNIST dataset but is considered

more complex than MNIST.

Figure 4.9. Example Images From Fashion MNIST Dataset. Starting from upper left:

T-Shirt/Top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag and Ankle

boot.

In the Fashion MNIST dataset, there are 60000 training images and 10000 test

images with balanced class labels. While optimizing CUTE hyper-parameters, we have

split 10% of the training images for validation and applied grid search over the network

hyper-parameters, learning rate, number of warm-up epochs, dropout rate and weight

parameters introduced in loss functions. Example images from each class are shown in

Figure 4.9

Multi-class clusters in the Fashion MNIST dataset utilize our routing mechanisms

as high-level classifiers. When we inspected the t-SNE embeddings of the Fashion

MNIST training set images, shown in Figure 4.10, some clusters of embeddings, such

as trousers, are easily distinguished from others. Additionally, sandals, sneakers, and

ankle boots are clustered close to each other. The rest of the classes are also clustered

within same-class images, although some class embeddings are intertwined, such as

pullovers, coats, and shirts. With mixtures of experts approach of CUTE, we aim to

create classifiers that are better focused on a subset of classes in the dataset.

34

Figure 4.10. t-SNE Embeddings of Fashion MNIST Training Images.

4.2.2. Architecture

We have used a convolutional neural network (CNN), shown in Figure 4.11, con-

sisting of 2 convolutional and three fully connected layers as our baseline. The con-

volutional layers consist of 32 and 64 convolutional filters, respectively, with a filter

size of 5 × 5. Dense layer sizes are 1024, 512, and 10, respectively. The conversion

from baseline architecture into CUTE architecture is carried out using the procedure

depicted in Figure 3.3.

35

Figure 4.11. The Baseline Architecture used in Fashion MNIST experiments.

We have created a network for the CUTE experiments, shown in Figure 4.12,

with two routing units in the first router and two in the second router. Therefore, a

CUTE route consists of 2 convolutional layers with 32, 32 filters. They are followed

by ReLU activation and max-pooling layers of size 2 × 2. There are fully connected

layers with 512, 512, and 10. The slim version of the CNN, shown in Figure 4.13, has

the same architecture as one route of the CUTE network.

Figure 4.12. The CUTE Architecture used in Fashion MNIST experiments.

Figure 4.13. The Slim Baseline Architecture used in Fashion MNIST experiments.

We have used the Adam [44] optimizer. We have trained each model in 100

epochs with a batch size of 100 and a starting learning rate of 0.001. The learning rate

starts with 0.001, is halved after 30th and 60th epochs ,and is divided by 10 in the 90th

epochs. After each fully connected layer in the convolutional and routing networks, we

have used dropout regularization. We have conducted a grid search for the dropout

rate within the interval [0, 0.5] with the step size of 0.05. We have decided the optimal

36

dropout rate for the baseline and CUTE as 0.45 and 0.5, respectively. We have also

conducted experiments on the slim baseline version, which resulted in lower accuracy.

Random routing results were also inferior to our CUTE results, which means that our

unsupervised routing method is not producing random results. We have used random

routing at the start of each training to make each path more generalized and robust

to routing errors. No routing loss is calculated while applying random routing. The

number of steps for the random routing is also optimized using grid search within the

interval [0, 30] with a grid size of 10 epochs. The value for the optimal random training

epochs is set to 10.

4.2.3. Results

The results are shown in Table 4.7. Each experiment result is the test set accu-

racy of 5 runs with the best hyper-parameter configuration obtained from experiments

performed on the validation set. Results show that our method can perform better

than the slim baseline, with an equivalent number of parameters, but it needs more

regularization to catch up with the baseline network. However, our method seems

promising given the number of parameters and MAC operations.

Table 4.7. Fashion MNIST Results. Each sample visits a network equivalent to CNN

(Slim) plus router blocks in CIGN and CUTE. CNN (R*) network uses CUTE

architecture, but routing is handled randomly. Average # MAC column shows the

average number of multiply-accumulate operations.

Method Avg Acc. Avg # MAC

CNN Baseline 92.65% 14.40× 106

CNN (Slim) 92.21% 6.71× 106

CNN (R*) 91.98% 6.71× 106

CIGN [4] 92.37% 7.21× 106

CUTE 92.51% 7.21× 106

37

Figure 4.14. Visualization of Routing Logits for the First Routing Network.

In CUTE experiments, routing outputs have shown that our routing layers trans-

form the input values fed from the previous layer, similar to dimensionality reduction.

The transformation can be seen from the visualization of output values of routing net-

works. Since we have used two routes in each experiment, we used the output logit

values directly in Figures 4.14 and 4.15. When logits from the routing network outputs

are investigated, the embeddings lay over the line between points (0, 1) and (1, 0). As

observed from the images, images are sorted according to their classes as trouser, dress,

t-shirt, shirt, coat, pullover, sneaker, bag, sandal, and ankle boot. Trouser, dress, t-

shirt, shirt, and coat follow the first path in the first routing layer, while pullover,

38

sneaker, bag, sandal, and ankle boot classes follow the second route. Similar routings

are observed in the second routing network where ankle boot, sandal, sneaker, and

pullover follow the first route while the rest follow the second route with a different

ordering of classes alongside the embedding line.

Figure 4.15. Visualization of Routing Logits for the Second Routing Network.

Investigating the routing behavior of the CUTE showed that similar classes tend

to follow similar paths. Therefore, we can conclude that even though we do not use

class supervision in our routing loss, it is possible to learn a routing mechanism to train

a mixture of experts classifier for subsets of classes that are difficult to distinguish.

39

Figure 4.16. Routing statistics for T-Shirt/Top, Trouser, Pullover, Dress and Coat

classes: Percentage of images in the test set that follow a particular class route are

shown on the tree edges. The second-degree nodes (F2) of the trellis structure are

shown twice to make the results more readable. The classification accuracy of given

classes following the root is shown at the leaves.

40

Figure 4.17. Routing statistics for Shirt, Sneaker, Bag and Ankle Boot classes:

Percentage of images in the test set that follow a particular class route are shown on

the tree edges. The second-degree nodes (F2) of the trellis structure are shown twice

to make the results more readable. The classification accuracy of given classes

following the root is shown at the leaves.

The most apparent drawback of the CUTE architecture is that misrouting a sam-

ple may cause poor classification performance due to sub-optimal feature extraction.

As seen in Figure 4.17, each class has a path which most of its samples follow, and a

misrouted sample is more prone to misclassification. Compared to CIGN, which has

a tree-structured network, our network architecture allows the second routing layer to

compensate for the misrouting of the first routing network. T-Shirt/Top, Pullover and

Shirt samples following the non-frequent route after the first routing classified better

41

when they routed to the most frequent route in the second routing classified better.

For the T-Shirt/Top class, 2.8% of the samples are routed to the less frequent first

route in the first routing but are routed to the most frequent first route in the second

routing and classified better than those misrouted in the second routing. Therefore,

we can conclude that our trellis structure has the advantage of compensating routing

errors over the tree structure.

42

5. CONCLUSION

In this thesis, we proposed a trellis-shaped artificial neural network model, called

Conditional Unsupervised Information Gain Trellis, CUTE, in which samples can be

routed during training and inference stages, using routing networks trained with infor-

mation gain-based unsupervised objectives. We have proposed methods and strategies

for its training and inference. We have conducted clustering experiments using a net-

work trained with our novel unsupervised information gain-based objective function.

Moreover, we have experimented with our CUTE architecture against the well-known

Fashion MNIST dataset. We show that CUTE performs on par with unconditional

baselines with a heavier computational burden. It also performs favorably compared

to similar conditional computation methods in terms of accuracy while achieving a

comparable reduction in the number of used Multiply-And-Accumulate operations. We

analyzed the routing behavior of our routing networks at each layer. Our investigations

over the routing at different layers have shown that the trellis structure enables mis-

routed samples to recover. Additionally, we observed that semantically similar classes

followed similar paths that specialized in classifying a subset of classes.

Deep learning models have been highly successful in solving the image classifica-

tion challenge. In general, the better deep neural networks’ classification performance,

the more computationally expensive architectures become. Most prominent deep learn-

ing models handle inference in a static way, meaning that once training is completed,

the network architecture and weight parameters are fixed.

Conditional computing generates new neural network architectures that can ac-

tivate a subset of the network based on the input sample. As a result, they can dy-

namically limit the use of computational resources. Additional to efficiency advantage,

conditional methods can significantly enlarge the parameter space, therefore, the repre-

sentation power of the model. Computational architectures allow the user to trade-off

accuracy and efficiency for the low processing power environments. Therefore, they

43

are more adaptable to different hardware platforms, especially embedding systems or

mobile devices.

Although artificial neural networks are inspired by the neural system of the hu-

man, the most common neural architectures are sequential as opposed to research on

the human brain that claims that the brain processes information in a dynamic way.

However, conditional architectures allow networks to process input dynamically. In

addition, dynamic conditional models allow us to observe which input parts are ac-

countable for the network’s predictions.

CUTE proposed two novel approaches to the conditional network domain. Firstly,

the unsupervised information gain-based objective is introduced for the routing net-

works. Shortly, our objective function tries to increase the entropy of the routing

predictions made by the router network while also preventing overfitting on a single

route. Secondly, the trellis-shaped architecture is inspired by the tree-structured con-

ditional computing methods but handles the disadvantage of misrouting in early layers

by allowing it to be routed correctly at the following router nodes.

The future work for our model will be focused on regularizing the CUTE training

scheme. We have observed that one of the main reasons for classification error is

misrouting the samples from the class’ most preferred path. We observed that the

subset of classes split in the first router is split with a very similar distribution in

the second router, even though a CUTE network with two routing networks with two

possible routes creates four possible paths for an input sample. Therefore, most samples

follow two paths out of four possible route combinations. Further experiments can be

done with router networks with more possible routes, or a global objective function can

be introduced to incentivize samples to use less-preferred routes. Another approach

for increasing the classification performance of the CUTE networks can be applying

soft gating mechanisms instead of hard gating at the routers. Soft gating allows us to

utilize feature maps from multiple paths for the problematic samples.

44

We designed the CUTE network as a conditional dynamic deep learning archi-

tecture. However, we decide the network architecture beforehand and then train the

network to adapt to the given architecture. Alternatively, another future work direction

can be sequentially designing the network hierarchy by observing the data distribution

of the routing networks.

45

REFERENCES

1. Krizhevsky, A., I. Sutskever and G. E. Hinton, “Imagenet Classification with Deep

Convolutional Neural Networks”, Advances in Neural Information Processing Sys-

tems , Vol. 25, pp. 1097–1105, 2012.

2. Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, “Imagenet: A Large-

scale Hierarchical Image Database”, 2009 IEEE Conference on Computer Vision

and Pattern Recognition, pp. 248–255, IEEE, 2009.

3. Hubel, D. H. and T. N. Wiesel, “Receptive Fields, Binocular Interaction and Func-

tional Architecture in the Cat’s Visual Cortex”, The Journal of Physiology , Vol.

160, No. 1, pp. 106–154, 1962.

4. Biçici, U. C., C. Keskin and L. Akarun, “Conditional Information Gain Networks”,

2018 24th International Conference on Pattern Recognition, pp. 1390–1395, IEEE

Computer Society, 2018.

5. Jordan, M. I. and R. A. Jacobs, “Hierarchical Mixtures of Experts and the EM

Algorithm”, Neural Computation, Vol. 6, No. 2, pp. 181–214, 1994.

6. Montillo, A., J. Tu, J. Shotton, J. Winn, J. E. Iglesias, D. N. Metaxas and A. Crim-

inisi, “Entanglement and Differentiable Information Gain Maximization”, Decision

Forests for Computer Vision and Medical Image Analysis , pp. 273–293, Springer,

2013.

7. Xiao, H., K. Rasul and R. Vollgraf, “Fashion-MNIST: A Novel Image Dataset for

Benchmarking Machine Learning Algorithms”, arXiv Preprint arXiv:1708.07747 ,

2017.

8. LeCun, Y., L. Bottou, Y. Bengio and P. Haffner, “Gradient-based Learning Applied

to Document Recognition”, Proceedings of the IEEE , Vol. 86, No. 11, pp. 2278–

46

2324, 1998.

9. Hinton, G. E., S. Osindero and Y.-W. Teh, “A Fast Learning Algorithm for Deep

Belief Nets”, Neural Computation, Vol. 18, No. 7, pp. 1527–1554, 2006.

10. Raina, R., A. Madhavan and A. Y. Ng, “Large-scale Deep Unsupervised Learning

Using Graphics Processors”, Proceedings of the 26th International Conference on

Machine Learning , pp. 873–880, 2009.

11. Bengio, Y., “Deep Learning of Representations: Looking Forward”, International

Conference on Statistical Language and Speech Processing , pp. 1–37, Springer,

2013.

12. Bengio, Y., N. Léonard and A. Courville, “Estimating or Propagating Gradi-

ents Through Stochastic Neurons for Conditional Computation”, arXiv Preprint

arXiv:1308.3432 , 2013.

13. Murdock, C., Z. Li, H. Zhou and T. Duerig, “Blockout: Dynamic Model Selection

for Hierarchical Deep Networks”, 2016 IEEE Conference on Computer Vision and

Pattern Recognition, pp. 2583–2591, IEEE, Las Vegas, NV, USA, 2016.

14. Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,

“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, Jour-

nal of Machine Learning Research, Vol. 15, No. 56, pp. 1929–1958, 2014.

15. Bengio, E., P.-L. Bacon, J. Pineau and D. Precup, “Conditional Computation in

Neural Networks for Faster Models”, arXiv Preprint arXiv:1511.06297 , 2016.

16. Wu, Z., T. Nagarajan, A. Kumar, S. Rennie, L. S. Davis, K. Grauman and R. Feris,

“BlockDrop: Dynamic Inference Paths in Residual Networks”, 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 8817–8826, IEEE,

2018.

47

17. Veit, A. and S. Belongie, “Convolutional Networks with Adaptive Inference

Graphs”, International Journal of Computer Vision, Vol. 128, No. 3, pp. 730–741,

2020.

18. Wang, X., F. Yu, Z.-Y. Dou, T. Darrell and J. E. Gonzalez, “Skipnet: Learn-

ing Dynamic Routing in Convolutional Networks”, Proceedings of the European

Conference on Computer Vision, pp. 409–424, 2018.

19. McGill, M. and P. Perona, “Deciding How to Decide: Dynamic Routing in Artificial

Neural Networks”, International Conference on Machine Learning , pp. 2363–2372,

2017.

20. Figurnov, M., M. D. Collins, Y. Zhu, L. Zhang, J. Huang, D. Vetrov and

R. Salakhutdinov, “Spatially Adaptive Computation Time for Residual Networks”,

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pp. 1039–1048, 2017.

21. Liu, H., S. Parajuli, J. Hostetler, S. Chai and B. Bhanu, “Dynamically Throttleable

Neural Networks (TNN)”, arXiv Preprint arXiv:2011.02836 , 2020.

22. Cai, S., Y. Shu and W. Wang, “Dynamic Routing Networks”, 2021 IEEE Winter

Conference on Applications of Computer Vision, pp. 3587–3596, IEEE, 2021.

23. Jang, E., S. Gu and B. Poole, “Categorical Reparameterization with Gumbel-

Softmax”, arXiv preprint arXiv:1611.01144 , 2016.

24. Maddison, C. J., A. Mnih and Y. W. Teh, “The Concrete Distribution: A Contin-

uous Relaxation of Discrete Random variables”, arXiv preprint arXiv:1611.00712 ,

2016.

25. Ioannou, Y., D. Robertson, D. Zikic, P. Kontschieder, J. Shotton, M. Brown

and A. Criminisi, “Decision Forests, Convolutional Networks and the Models In-

between”, arXiv Preprint arXiv:1603.01250 , 2016.

48

26. Teerapittayanon, S., B. McDanel and H.-T. Kung, “BranchyNet: Fast Inference

via Early Exiting from Deep Neural Networks”, 23rd International Conference on

Pattern Recognition, pp. 2464–2469, IEEE, 2016.

27. Jiang, Y.-G., C. Cheng, H. Lin and Y. Fu, “Learning Layer-Skippable Inference

Network”, IEEE Transactions on Image Processing , Vol. 29, pp. 8747–8759, 2020.

28. Eigen, D., M. Ranzato and I. Sutskever, “Learning Factored Representations in a

Deep Mixture of Experts”, arXiv preprint arXiv:1312.4314 , 2013.

29. Shazeer, N., A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le, G. E. Hinton and

J. Dean, “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-

Experts Layer”, Proceedings of the International Conference on Learning Repre-

sentations , International Conference on Learning Representations, 2017.

30. Ahmed, K., M. H. Baig and L. Torresani, “Network of Experts for Large-Scale

Image Categorization”, European Conference on Computer Vision, pp. 516–532,

Springer, 2016.

31. Yan, Z., H. Zhang, R. Piramuthu, V. Jagadeesh, D. DeCoste, W. Di and Y. Yu,

“HD-CNN: Hierarchical Deep Convolutional Neural Networks for Large Scale Vi-

sual Recognition”, Proceedings of the IEEE International Conference on Computer

Vision, pp. 2740–2748, 2015.

32. Murthy, V. N., V. Singh, T. Chen, R. Manmatha and D. Comaniciu, “Deep Deci-

sion Network for Multi-class Image Classification”, Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pp. 2240–2248, 2016.

33. Kontschieder, P., M. Fiterau, A. Criminisi and S. R. Bulo, “Deep Neural Decision

Forests”, 2015 IEEE International Conference on Computer Vision, pp. 1467–

1475, IEEE, Santiago, Chile, 2015.

34. Zhou, Z.-H. and J. Feng, “Deep Forest: Towards an Alternative to Deep Neural

49

Networks”, Proceedings of the 26th International Joint Conference on Artificial

Intelligence, pp. 3553–3559, 2017.

35. LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and

L. D. Jackel, “Backpropagation Applied to Handwritten Zip Code Recognition”,

Neural Computation, Vol. 1, No. 4, pp. 541–551, 1989.

36. Ioffe, S. and C. Szegedy, “Batch Normalization: Accelerating Deep Network Train-

ing by Reducing Internal Covariate Shift”, International Conference on Machine

Learning , pp. 448–456, PMLR, 2015.

37. Ba, J. L., J. R. Kiros and G. E. Hinton, “Layer Normalization”, arXiv Preprint

arXiv:1607.06450 , 2016.

38. Williams, R. J., “Simple Statistical Gradient-following Algorithms for Connection-

ist Reinforcement Learning”, Machine learning , Vol. 8, No. 3, pp. 229–256, 1992.

39. Quinlan, J. R., “Induction of Decision Trees”, Machine learning , Vol. 1, No. 1, pp.

81–106, 1986.

40. Quinlan, J. R., “C4.5: Programs for Machine Learning”, In Proceedings of 10th

International Conference on Machine Learning , pp. 252–259, 1993.

41. LeCun, Y., B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard and

L. Jackel, “Handwritten Digit Recognition with a Back-Propagation Network”,

Advances in Neural Information Processing Systems , Vol. 2, 1989.

42. Lloyd, S., “Least Squares Quantization in PCM”, IEEE Transactions on Informa-

tion Theory , Vol. 28, No. 2, pp. 129–137, 1982.

43. Rand, W. M., “Objective Criteria for the Evaluation of Clustering Methods”, Jour-

nal of the American Statistical Association, Vol. 66, No. 336, pp. 846–850, 1971.

50

44. Kingma, D. P. and J. Ba, “Adam: A Method for Stochastic Optimization”, arXiv

Preprint arXiv:1412.6980 , 2014.

